Table. Comparison of the advantages and disadvantages of different non-invasive examination methods for PWS

Methods	Advantage	Disadvantage
Dermoscopy	Easy to operate	Penetration depth is limited
	Assess vessel morphology	
	predict efficacy	
VISIA-CR [™] system	Objectively assess the fading of	Unable to assess deeper structures
	lesions before and after treatment	
	More accurate than naked-eye	
	observation	
	Calculable erythema index to	
	objectively evaluate efficacy	
Reflectance	With high resolution and high contrast	When the penetration depth is greater
Confocal		than 150µm, the imaging quality of
Microscopy (RCM)		PWS decreases
	Applied to the assessment of skin	Penetration is limited to the upper
	vascular structure, blood flow, and	dermis and cannot assess the deepest
	velocity	vessels
	Wide field of view	Image capture takes long
	Reduce motion artifacts during	
	imaging to optimize treatment	
	parameters	
	The maximum depth that can	
	penetrate human skin is 250-300µm	
High-frequency	High resolution	Poor imaging contrast
Ultrasound (HFUS)	C	
	The skin and its appendages,	When ultrasound is below 20MHz, it
	subcutaneous tissue, and deep	has poor ability to identify fine
	structures can be observed	structures below the skin surface
	Measuring the thickness and depth of	Unable to assess fading
	deep lesions in PWS	
	Assess hemodynamics	Ultrasound operators require high
	5	levels of precision and proficiency
Optical Coherence	Monitoring cutaneous vasculopathy	Penetration depth is poor, about 2
Tomography (OCT)	in situ, in vivo, and in real-time	mm
	Accurately measure vessel diameter	Inability to distinguish PWS vessels
	and depth in PWS	from other structures such as cavities
	F	or sebaceous glands
1.Dynamic Optical	Calculation of superficial plexus	Handheld OCT probes are unstable
Coherence	depth and diameter, as well as density	when in contact with skin
	characteristics of surface vessels	
Tomography(D-		
Tomography(D- OCT)		
Tomography(D- OCT)	Assessing Vascular Characteristics of	

Optical Coherence Tomography Angiography (OCTA) Doppler Optical Coherence	Visualizing functional vascular networks within microcirculatory tissue beds Imaging blood vessels based on flow properties Show blood flow and differentiate between blood vessels and other	Artifacts may exist Unable to determine the direction of blood flow Low resolution and sensitivity
Tomography	structures	
(Doppler-OCT) Photoacoustic	Measure deeper blood flow velocities and locate vessel walls Good depth of penetration	Small blood vessels as well as deeper vessels cannot be detected Poor axial resolution and imaging
Imaging (PAI)	Good depth of penetration	capability
	High contrast ratio	
	Fine anatomy from the epidermis to the subcutaneous tissue can be depicted	
Laser Speckle	Assessing changes in perfusion before and after PDL treatment	Produces significant motion artifacts
Imaging (LSI)	Intraoperative monitoring tools	Maximum depth to generate laser scatter contrast information is limited
	With objective and quantitative data	
	Short detection time	· · · · · · · · ·
Laser Doppler Imaging (LDI)	Real-time measurement of microvascular perfusion in biological tissues	Lower spatial resolution and repeatability
	Evaluating Changes in PWS Perfusion After Sequential Laser Therapy	
	Visualizing perfusion in the microcirculatory system	